3x Table	3x Table	4x Table	4 x Table	8x Table	8x Table
$0 \times 3=0$	$0 \div 3=0$	$0 \times 4=0$	$0 \div 4=0$	$0 \times 8=0$	$0 \div 8=0$
$1 \times 3=3$	$3 \div 3=1$	$1 \times 4=4$	$4 \div 4=1$	$1 \times 8=8$	$8 \div 8=1$
$2 \times 3=6$	$6 \div 3=2$	$2 \times 4=8$	$8 \div 4=2$	$2 \times 8=16$	$16 \div 8=2$
$3 \times 3=9$	$9 \div 3=3$	$3 \times 4=12$	$12 \div 4=3$	$3 \times 8=24$	$24 \div 8=3$
$4 \times 3=12$	$12 \div 3=4$	$4 \times 4=16$	$16 \div 4=4$	$4 \times 8=32$	$32 \div 8=4$
$5 \times 3=15$	$15 \div 3=5$	$5 \times 4=20$	$20 \div 4=5$	$5 \times 8=40$	$40 \div 8=5$
$6 \times 3=18$	$18 \div 3=6$	$6 \times 4=24$	$24 \div 4=6$	$6 \times 8=48$	$48 \div 8=6$
$7 \times 3=21$	$21 \div 3=7$	$7 \times 4=28$	$28 \div 4=7$	$7 \times 8=56$	$56 \div 8=7$
$8 \times 3=24$	$24 \div 3=8$	$8 \times 4=32$	$32 \div 4=8$	$8 \times 8=64$	$64 \div 8=8$
$9 \times 3=27$	$27 \div 3=9$	$9 \times 4=36$	$36 \div 4=9$	$9 \times 8=72$	$72 \div 8=9$
$10 \times 3=30$	$30 \div 3=10$	$10 \times 4=40$	$40 \div 4=10$	$10 \times 8=80$	$80 \div 8=10$
$11 \times 3=33$	$33 \div 3=11$	$11 \times 4=44$	$44 \div 4=11$	$11 \times 8=88$	$88 \div 8=11$
$12 \times 3=36$	$36 \div 3=12$	$12 \times 4=48$	$48 \div 4=12$	$12 \times 8=96$	$96 \div 8=12$

multiply	repeatedly adding the same amount the amount increases
multiple	the result of multiplying a number by a whole number
times table	multiplication facts divide or groups
inverse	the reverse of - multiplication is the inverse of division
associated	multiplication and division facts linked using the inverse
array	sets of objects arranged in rows and columns

Tens	Ones
ITITITH H1UTHT	90
9171717 \＃17T1T1	9
花畀畀	$\stackrel{B 0}{10}$

